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Future state prediction for nonlinear dynamical systems is a
challenging task, particularly when only a few time series sam-
ples for high-dimensional variables are available from real-world
systems. In this work, we propose a model-free framework,
named randomly distributed embedding (RDE), to achieve accu-
rate future state prediction based on short-term high-dimensional
data. Specifically, from the observed data of high-dimensional
variables, the RDE framework randomly generates a sufficient
number of low-dimensional “nondelay embeddings” and maps
each of them to a “delay embedding,” which is constructed from
the data of a to be predicted target variable. Any of these map-
pings can perform as a low-dimensional weak predictor for future
state prediction, and all of such mappings generate a distribu-
tion of predicted future states. This distribution actually patches
all pieces of association information from various embeddings
unbiasedly or biasedly into the whole dynamics of the target vari-
able, which after operated by appropriate estimation strategies,
creates a stronger predictor for achieving prediction in a more
reliable and robust form. Through applying the RDE framework
to data from both representative models and real-world systems,
we reveal that a high-dimension feature is no longer an obsta-
cle but a source of information crucial to accurate prediction for
short-term data, even under noise deterioration.

prediction | nonlinear dynamics | time series | high-dimensional data |
short-term data

The big data era has witnessed the accumulation of various
types of time series data from microscopic gene expression

data through mesoscopic neural activity data to macroscopic
ecological or/and atmosphere data (1–5). A challenging task is
making accurate forecast or prediction (6, 7) based on such
time series datasets, in particular for those datasets with short-
term time points but high-dimensional variables. Generally,
these two properties are both considered as obstacles for accu-
rate and robust prediction, because short-term datasets always
result in fewer statistical patterns for prediction while high-
dimensional system variables are likely to bring the curse of
dimensionality problem. Specifically, for the model-based meth-
ods, such as regression methods (8), or equation-based models
(9, 10), taking account of higher-dimensional variables requires
a larger number of parameters or weights in the model, making
it impractical to estimate these parameters or weights accu-
rately only with short-term data. For the model-free methods,
such as the empiricism-based methods where the nearest neigh-
bors in historical data are used to predict the future values
(11, 12), short-term data make the depicted attractor sparse
in a high-dimensional space, which therefore, yields a problem
of the false nearest neighbors. Additionally, machine learning
methods, including deep belief network (13), long short-term

memory network (14), and reservoir computing (15–18), have
been intensively studied and applied to achieve systems recon-
structions and dynamics prediction (19–26). However, based
on the neural networks framework (27, 28), the performance
of the artificial neural networks crucially and largely relies on
the length of the available training data. Thus, these represen-
tative methods are effective in accurate prediction only when
the training set contains a sufficiently large amount of train-
ing data. To handle high-dimensional data, dimension reduction
techniques [e.g., various principal component analyses (29, 30),
sparse regularization (31–33), and local linearizations] are usu-
ally applied for feature extraction. However, the consequence
of these applications is likely to overlook interactions (partic-
ularly nonlinear interactions) or associations mutually between
variables in high-dimensional systems. These interactions in
nonlinear dynamics are the crucial information for prediction,
remedying the difficulty due to the limited length of observed
data, and therefore, the reduction techniques are not always ben-
eficial to accurate prediction of dynamics in complex nonlinear
systems (34). Thus, making a good use of the deterministic asso-
ciation or interaction information among the high-dimensional
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variables becomes a pivotal key to designing a useful prediction
method (35).

In this work, we propose a model-free framework, named
as randomly distributed embedding (RDE), to accurately pre-
dict future dynamics based on the observed short-term high-
dimensional data. In addition to using the temporal information
of each variable, such as the traditional methods usually execute
for the long-term data, we exploit the spatial information of the
short-term data, such as associations or interactions among the
high-dimensional variables. Particularly, the RDE framework
can be thought of as an exchange scheme between the spatial
information among the observed high-dimensional variables and
the time-dependent probability distributions for the temporal
dynamics. Thus, it improves the predictability significantly for a
target variable. By using the RDE framework to the short-term
high-dimensional data produced by both representative mod-
els and real-world systems, we show that a high-dimensional
feature is no longer an obstacle but a source of information cru-

cial to accurate prediction for short-term data even under noise
perturbation.

RDE Framework
Delay and Nondelay Embeddings Form Low-Dimensional Attractors.
Usually in a typical high-dimensional nonlinear system, there is
a large number of variables interacting with each other; how-
ever, the steady dynamics after a transient phase is generally
constrained into a low-dimensional subspace due to dissipa-
tion. Thus, the state-space technique, based on the embedding
theorem, makes it possible to reconstruct a low-dimensional
attractor from time series data observed from such a system
(36, 37).

As particularly shown in Fig. 1, with the n-dimensional
time series data xi(t), i = 1, 2, . . . ,n , two kinds of 3D (three-
dimensional) attractors can be reconstructed. Specifically,
according to the delayed embedding theory (36, 37), one kind
is reconstructed in a form of M(xk (t), xk (t + τ), xk (t + 2τ)),
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Fig. 1. Sketch of embedding the original attractor in a high-dimensional space into a reconstructed attractor in a low-dimensional space.
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where xk (t) is the observed time series of a single variable and
also, the target variable to be predicted. The other kind, accord-
ing to the generalized embedding theory (37–39), is formed
by N (xi(t), xj (t), xs(t)), where xi(t), xj (t), and xs(t) are the
observed time series of multivariables that are randomly selected
and used to predict xk (t). To make the expression clear and com-
pact, we nameM as the delay attractor and N as the nondelay
attractor.

The dimension L for reconstructing the above attractors
is equal to three, which is an example of the reconstructed
space. In fact, the reconstructed dimension for a general attrac-
tor, based on the embedding theory (SI Appendix), could be
either smaller or larger; however, it is usually much less than
the high dimension of the original dissipative system. Thus,
as conveyed by the embedding theory, these delay and non-
delay attractors of lower dimensions theoretically preserve the
dynamical information of the entire system in different ways.
As illustrated in Fig. 1, the temporal (or delay) informa-
tion of the target single variable is explored in the delay
attractor while the spatial or association information among
high-dimensional variables is mainly exploited in the nondelay
attractor.

A Predictor: Mapping from Nondelay Attractor of Multivariables to
Delay Attractor of One Target Variable. The embedding theory
reveals that all of the above reconstructed attractors with appro-
priately reconstructed dimensions are topologically conjugated
to the original attractor because of a diffeomorphism map (i.e.,
Ψ :N →M) (37). Thus, for each index tuple l = (i , j , s), a com-
ponent of such a mapping, denoted by ψl , can be obtained as a
predictor for the target variable xk (t) in the form of

xk (t + τ) =ψl(xi(t), xj (t), xs(t)).

Notice that L= 3 is much lower than the dimension n of the
entire system. Then, typical approximation frameworks with
usual fitting algorithms could be used to implement this pre-
dictor. In this paper, we apply the Gaussian Process Regression
method (40) to fit each ψl . The above mapping actually trans-
forms the association information among multivariables into the
temporal dynamics of the predicted variable.

Multiple Predictors Forming a Probability Distribution at Each Future
Time Point. Provided with the observed high-dimensional data,
we reconstruct nondelay attractorsN (xi(t), xj (t), xs(t)) as many
as possible with different index tuples l = (i , j , s). For each non-
delay attractor, we can fit the corresponding predictor ψl to
predict a specific target variable xk (t). Here, each tuple l =
(i , j , s) is randomly chosen with replacement from any index
combinations of variables in the original high-dimensional data.
When the corresponding ψl is obtained, one-step prediction
x̃ l
k (t∗+ τ) =ψl(xi(t

∗), xj (t
∗), xs(t

∗)) could be further obtained
where t∗+ τ is the time instance to be predicted at time point
t∗. Thus, the more variables of the original data that are experi-
mentally observed, the more one-step prediction values, x̃ l

k (t∗+
τ), for xk (t∗+ τ) can be obtained. From the fact that each
nondelay embedding preserves the dynamical information of
the entire system in a different way, these embeddings have
different performances in making prediction, especially under
noise deterioration. In fact, at each future time point, the mul-
tiple prediction values x̃ l

k (t∗+ τ) actually form a probability
(frequency) distribution, except for some degenerative tuples
that appear as the outliers in the distribution of prediction as
illustrated in Fig. 2 (Results and SI Appendix).

Distribution Leveraging Prediction Accuracy. Compared with each
single prediction, the above-obtained distribution renders more
information leveraging prediction accuracy. Specifically, better
prediction can be estimated by

x̃k (t∗+ τ) = E
[
x̃ l
k (t∗+ τ)

]
,

where E [·] represents an estimation based on the available prob-
ability information of the random variable x̃ l

k . A straightforward
scheme to obtain this estimation is to use the expectation of
the distribution as the final prediction value [i.e., x̃k (t∗+ τ) =∫
xp(x )dx , where p(x ) denotes the probability density function

of the random variable x̃ l
k ]. In fact, this expectation scheme is

particularly useful for a general case where each random embed-
ding yields a prediction error δl , satisfying x̃ l

k (t∗+ τ) = xk (t∗+
τ) + δl and becoming a random variable with an expectation
very close to zero. However, when the prediction error expecta-
tion deviates far from zero, an aggregation scheme, independent
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of the zero-expectation assumption, has to be taken into account
in the RDE framework. Concretely, in light of the feature
bagging strategy in machine learning (41, 42), each random
embedding is treated as a feature, and thus, the final predic-
tion value is estimated by the aggregated average of the selected
features: that is,

x̃k (t∗+ τ) =

r∑
i=1

ωi x̃
li
k (t∗+ τ),

where each ωi is a weight related to the in-sample fitting error
of ψli and r represents the number of the best embeddings
showing fewer fitting errors for the final prediction (Materials
and Methods).

RDE Algorithm. Altogether with the above settings, the RDE
framework is established to make future state prediction as accu-
rate as possible. The elementary principle for this framework
is schematically depicted in Fig. 3, and the algorithm for more
general tuple l is presented in Materials and Methods.

Results
Synthetic Data. To illustrate the mechanism and the basic idea
of the RDE framework, we begin with a benchmark model
with additive noise. The model contains 10 interacted variables,
showing dynamical behavior of attractive periodicity that has
a box-counting dimension that is d = 1 in the 10D space (the
details of the system are provided in SI Appendix). According to
the RDE framework, multiple tuples of two components could
be randomly chosen and used to make one-step prediction for
the underlined component x7. In the noise-free situation, the
majority of the randomly chosen index tuples (the 2D random
embeddings) can bring accurate prediction, while there are some
degenerative cases where the chosen index tuple cannot make
good prediction, yielding large errors. Fig. 2A shows the numeri-
cal results of one-step prediction under the noise-free condition,
where the distribution of the prediction errors presents a delta
function-like form at the zero error, leaving small probability
of large errors. In the situation where the time series data are
deteriorated by noise, each embedding shows different ability to
cope with noise when making prediction due to the different way
in which the random embedding preserves the dynamical infor-
mation of the entire system. Accordingly, the distribution of the
prediction errors shows a normal distribution-like form except
for the outliers in the degenerative cases as shown in Fig. 2B. In
Fig. 2C, the distribution is further dispersed under a higher level
of noise strength while keeping the distribution center at zero.
The prediction of the benchmark system under noise deteriora-
tion using the RDE framework is further carried out in Fig. 4,
where the distribution of the prediction and the final predicted
value as well as outliers are depicted for each one-step predic-
tion. The correlation between the predicted values and the real
values reaches 0.99, confirming that the RDE framework works
effectively in accurate prediction for the benchmark model, even
under noise deterioration.

To validate the applicability of the RDE framework to make
multistep prediction for high-dimensional nonlinear systems, we
consider a 90D coupled Lorenz system. As shown in Fig. 5 A and
B, the multistep dynamics of the 90D system can be accurately
predicted from a measured time series with only 50 time points,
which clearly covers small segments of the attractor.

Spatiotemporal dynamics produces data evolving across time
as well as space (43, 44), such as one of the typical high-
dimensional systems involving a large number of interacted
variables. Since the variables interact with each other in an
unknown manner, the prediction of such a multivariable system
based on limited time series data thus becomes a challenging
task. We consider the data generated from an ideal storage
cellular automaton model (ISCAM) simulating heterocatalytic
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Fig. 4. Ten time points of one-step prediction for one variable in the bench-
mark model of a linear system. (A) The distribution of prediction by random
embeddings. Based on this information, the final predicted values are made.
(B) In addition to the original data and the predicted data, the box plot of
the distribution is also shown in plane with median values, upper and lower
quartiles, bounds, and outliers.

reaction–diffusion processes at metal surfaces (45, 46). The one-
step prediction results by using the RDE framework for a spiral
pattern in the 20× 20 grids are illustrated in Fig. 5C, which
clearly shows the effectiveness of our method for the spatiotem-
poral pattern prediction. Here, 800 variables are involved in the
system, and 100 consecutive pattern series are observed as the
training set.

Real-World Data. In the era of big-data, high-dimensional data
are ubiquitously collected from numerous real-world systems.
We first consider a set of gene expression data as representative
high-throughput biological data, typically with a large number
of genes but with a very small number of time sampling points.
The dataset was obtained by a gene expression profiling study
of both miRNA and mRNA in mouse liver (47), which consists
of time series containing 12 time points of 46,628 probes (each
probe measures every 4 h over 48 h). Due to the complicated
gene regulation mechanism (48), despite the high dimension and
different types of probes or genes, the time evolution of all of
these probes can be regulated by certain underlying complicated
regulation dynamics, thus forming a high-dimensional dynamical
system. Consequently, it is possible to use the RDE framework to
predict the gene expression dynamics of each specific probe. As
shown in Fig. 6A, the RDE framework achieves fairly accurate
one-step prediction in a leave-one-out way.

Climate datasets, usually collected at different locations by
regular sampling intervals, are known by their complex spa-
tiotemporal characteristics. Here, we consider the wind speed
datasets collected around the Tokyo capital region in Japan by
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the Japan Meteorological Agency (49). Taking delays for each
factor into consideration, the system shows a high-dimensional
property, and the 1-h prediction is made by the RDE framework
with a training set containing 400 time points as shown in Fig.
6B. The correlation between the predicted series and the original
series reaches 0.9.

The final real data test comes from the city of Hong Kong,
and it is composed of time series of air pollutants and disease
admissions in major hospitals in Hong Kong (50, 51). Consid-
ering the delay effect of every potential factor as well as a
dummy vector of weekday effect (52), we have a 48D system, and
without the RDE framework, it is difficult to predict the disease
admissions with only 200 observations in high accuracy. How-

ever, by using the RDE framework, the 1-d forward prediction
is obtained as shown in Fig. 6C, where the correlation between
the predicted values and the original values reaches 0.74 and the
predicted trend of the disease risk fits fairly well with the true
trend.

Discussion
Expectation Scheme or Aggregation Scheme. The expectation
scheme is simple and straightforward for applications. However,
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the aggregation scheme needs fitting error estimation before
making final prediction. Considering the short-term property of
the training set, we adopt a leave-one-out strategy to obtain the
fitting error for the aggregation scheme. Thus, the aggregation
scheme requires higher computational cost than the expectation
scheme, but it does not rely on the zero-mean assumption of
the prediction errors as summarized in SI Appendix. Notice that
the distribution of such a prediction error is unknown a priori.
Then, it is nontrivial to make a selection from these two schemes
in advance. For the choice, we judge whether or not the distri-
bution of prediction is symmetric using the skewness quantity
for a distribution. Larger skewness suggests that the distribution
is asymmetric and consequently, that the normal expectation is
unlikely to become the best candidate for the final prediction.
The effectiveness of the skewness is further illustrated by using a
benchmark system as shown in SI Appendix.

Number of Mappings from Nondelay Attractors to a Delay Attractor.
The advantage of the RDE framework exists in decoding the
intertwined information among various variables of a com-
plex system by considering a large number of embeddings in
low-dimensional subspaces. Specifically, the number of possi-

ble nondelay embeddings grows combinatorially as the system
dimension increases in a manner as

m =

(
n
L

)
,

where n is the number of observed variables and L is the embed-
ding dimension. However, if we intend to obtain all of the
possible nondelay embeddings as n increases, the computational
cost grows drastically, and the curse of dimensionality problem
emerges unavoidably. As a matter of fact, in practice it is neither
necessary nor practically profitable to exhaust all of the candi-
date nondelay embeddings. When we estimate the expectation
of the underlined distribution, according to the sampling theory
(53, 54), the width of the confidence interval for the estimated
expectation decreases as the number of sampling increases. Par-
ticularly for the normal distribution, the confidence interval
could even be analytically provided in advance (SI Appendix).
With this interval, only a small number of random embeddings
are sufficient to reach the precision of the expectation estimation
scheme. Actually, the computation of all of the corresponding
mappings is highly parallel, and thus, the computational cost
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Fig. 7. Performance comparisons of different methods with different lengths of training data and different levels of noise. Two criteria are used to evaluate
the prediction quality: the correlation ρ and the rms error between the predicted series and the test data. (A and B) The length test based on 100 randomly
chosen sections for each length of training data. (C and D) The noise test based on 100 independent trials. Here, the median, the upper quartile, and the
lower quartile are shown. SNR, signal-to-noise ratio.
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can be further alleviated by using parallel computation. For
the aggregation scheme, however, we use the in-sample test or
the Monte Carlo method with replacement to score candidate
random embeddings. In fact, as the number of random embed-
dings increases, the best in-sample error (or the fitting error)
decreases exponentially as shown in SI Appendix. Thus, we ter-
minate random embeddings sampling when the in-sample error
converges (at the elbow of the exponential decrease), which
reduces computational cost and brings good generalization
as well.

Short-Term Data, Robustness, and Comparisons. Since the RDE
framework fully exploits the information embedded in low-
dimensional attractors and does not require the coverage of the
whole attractor, it is possible to deal with very limited train-
ing data. To validate this, we carry out a length test on the
coupled Lorenz systems with 15 variables. The test is based
on multiple randomly selected sections of measured data. The
results are shown in Fig. 7 A and B, where two criteria for one-
step predictions are plotted vs. the length of measured data.
Compared with other prediction methods for high-dimensional
data, the RDE framework particularly works well with very
short-term data. Clearly, around 20 time points of the mea-
sured data are sufficient for reconstructing system’s dynamics. In
the literature, both the classic single-variable embedding (SVE)
method (11) and the recently proposed multiview embedding
(MVE) method (55) can deal with the prediction of high-
dimensional data. To make predictions, they both rely on the
nearest neighbors in the attractor reconstructed by the histori-
cal data, and thus, they may suffer from false nearest neighbors
when the length of the time series data is very short. How-
ever, the RDE framework does not require that the measured
data (training data) cover the whole attractor. It works effec-
tively even when only small segments of the attractor are covered
by the measured data as shown in Fig. 5B. As clearly shown
in Fig. 7 A and B, for the same short-term data (less than
30 points), both methods, MVE and SVE, have poor conver-
gence, while the RDE framework performs well. Indeed, MVE
and SVE work well only when the training data become longer
(but they are still far from convergence), since longer training
data produce better coverage of the nearest neighbors in the
attractor.

Noise is inevitable in real applications, and to test the practical
robustness of the RDE framework, we also consider the effect
of additive white noise in the above 15D coupled Lorenz sys-
tem with 50 time points as training data. Fig. 7 C and D shows
that the RDE framework works well for the signal-to-noise ratio
larger than 10, which is as robust as the empirical data-based
MVE and SVE methods. Moreover, although both the RDE
framework and the RBF (radial basis function) network method
proposed in ref. 33 use the inverse embedding technique, the
RDE framework fully leverages the information in the distribu-
tion of a large amount of random embeddings, while the RBF
method uses inverse embedding directly for a high-dimensional
system. This difference outstandingly promotes the robustness
of the RDE framework against noise deterioration as shown in
Fig. 7 C and D.

Conclusion
In summary, we have established a framework to make pre-
dictions from short-term high-dimensional data accurately. The
novelty of this RDE framework roots in a full exploitation of
the information embedded in a large number of low-dimensional

nondelay attractors as well as in an appropriate use of the
exploited distribution of the target variable for prediction. On
one hand, the RDE framework creates a distribution, patch-
ing all pieces of information from various embeddings into the
entire dynamics of the predicted variable. On the other hand,
the selection of suitable estimation schemes based on the distri-
bution information thereby significantly increases the prediction
reliability and robustness, even for those short-term data with
noise deterioration. As validated by datasets produced by both
benchmark models and real-world systems, the method is espe-
cially effective for the observed short-term high-dimensional
time series. This virtue makes the RDE framework potentially
useful in mining big datasets from real-world systems.

Materials and Methods
Given time series data sampled from n variables of a system with length
m (i.e., x(t)∈Rn, t = t1, t2, . . . , tm, where ti = ti−1 + τ ), one can estimate
the box-counting dimension d of the system’s dynamics using the false
nearest neighbor algorithm (56) and choose embedding dimension L> 2d.
Assume that the target variable to be predicted is represented as xk. The
RDE algorithm is listed as follows:

• Randomly pick s tuples from (1, 2, . . . , n) with replacement, and each
tuple contains L numbers.

• For the lth tuple (l1, l2, . . . , lL), fit a predictor ψl so as to minimize∑m−1
i=1 ‖xk(ti + τ )−ψl

(
xl1

(ti), xl2
(ti), . . . , xlL

(ti)
)
‖. Standard fitting algo-

rithms could be adopted. In this paper, Gaussian Process Regression is
used.

• Use each predictor ψl, and make one-step prediction x̃l
k(t* + τ ) =

ψl

(
xl1

(t*), xl2
(t*), . . . , xlL

(t*)
)

for a specific future time t* + τ .

• Multiple predicted values form a set {x̃l
k(t* + τ )}. Exclude the out-

liers from the set, and use the Kernel Density Estimation method to
approximate the probability density function p(x) of its distribution.

• Calculate the skewness γ of such distribution. In the case γ < ξ, where ξ
is a threshold value, make the final prediction as x̃k(t* + τ ) =

∫
xp(x)dx.

Otherwise, calculate the in-sample prediction error δl for the fitted ψl

using the leave-one-out method. Based on the rank of the in-sample
error, r best tuples are picked out, and the final prediction is given by the

aggregated average in the form of x̃k(t* + τ ) =
r∑

i=1

ωi x̃
li
k (t* + τ ), where

the weight ωi =
exp(−δi/δ1)∑
j exp(−δj/δ1) .

Here, the condition γ < ξ implies that the distribution is nearly symmetric;
then, the expectation of the distribution is used as the final prediction. Oth-
erwise, the distribution is asymmetric, indicating that the expectation is not
the best choice for the final prediction; then, the aggregation average is
used as the final prediction. In this work, we empirically set ξ as 0.1, and
a statistical hypothesis test with shuffling data could be carried out to get
a significant level. In this algorithm, the number s of tuples is determined
using a confidence interval or convergence of in-sample errors as given in
SI Appendix, and the number r of best tuples is empirically chosen as L.
The RDE algorithm described above is for one-step prediction, but the RDE
framework can be extended to multistep prediction. Particularly for the case
where ψl is approximated as a linear mapping, the form of ψl can be further
explicitly obtained as presented in SI Appendix.
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